Additions and Corrections

1994, Volume 33

James P. White III, Haibin Deng, Edwin P. Boyd, Judith Gallucci, and Sheldon G. Shore^{*}: Coordination Geometries of Solvated Lanthanide(II) Ions: Molecular Structures of the Cationic Species $[(DIME)_3Ln]^{2+}$ (DIME = Diethylene Glycol Dimethyl Ether; $Ln^{2+} = Sm$, Yb), $[(DIME)_2Yb-(CH_3CN)_2]^{2+}$, $[(DIME)Yb(CH_3CN)_5]^{2+}$, and $[(C_5H_5N)_5-Yb(CH_3CN)_2]^{2+}$.

Page 1691. Figure 5 in the original paper was incorrect. A revised version is printed below:

Robert H. Morris^{*} and Marcel Schlaf: π -Bonding of the Dihydrogen Ligand Probed by Mössbauer Spectroscopy.

Page 1725. The following article, where the Mössbauer spectra of the dihydrogen complexes $[Fe(H_2)H(depe)_2]BPh_4$ and $[Fe(H_2)H(dmpe)_2]BPh_4$ at 77 K were reported, should have been cited: Evans, D. J.; Jimenez-Tenorio, M.; Leigh, G. J. J. Chem. Soc., Dalton Trans. **1991**, 1785–1787. It is interesting to note that the quadrupole coupling constant for the depe complex must be quite temperature dependent because these authors report a constant of -0.23 mm s⁻¹ (sample at 77 K) while we report a constant of 0.0 mm s⁻¹ at 293 K. The Mössbauer parameters for $[Fe(H_2)H(depe)_2]BPh_4$ at 77 K are similar to those of the dinitrogen complex $[Fe(N_2)H(depe)_2]BPh_4$ at 77 K while the quadrupole couplings for the samples at 293 K are different.

Page 1726. We found by measuring the isomer shift of $[Fe(N_2)H(depe)_2]BPh_4$ (IS = 0.05, QS = -0.27) that our isomer shift scale must differ by 0.11 mm s⁻¹ from that used by Bancroft et al., ref 20. Evans et al. (see above) also found that their scale was shifted by 0.08 mm s⁻¹ from that of Bancroft et al. Therefore, in Table 1, the isomer shift (IS) of $[Fe(H_2)H(depe)_2]BPh_4$ at 293 K should be 0.08 mm s⁻¹, not -0.03 mm s⁻¹, to be consistent with the data of Bancroft et al. This moves the point for H₂ in Figure 1 up a little but does not change the conclusions of the paper. However our value of -0.03 mm s⁻¹ is probably correctly referenced to stainless steel.